วีดีโอ
วันอาทิตย์ที่ 29 ตุลาคม พ.ศ. 2560
ตัวอย่างที่3.4Exact Equation (สมการแม่นตรง) (siny-ysin x)dx+(cosx+xcosy-y)dy=0
จงหาคำตอบของสมการแม่นตรง (siny-ysin
x)dx+(cosx+xcosy-y)dy=0
จัดรูปให้อยู่ใน
จะได้
ตรวจสอบก่อนว่าเป็นสมการแม่นตรงหรือไม่
โดยหาอนุพันย่อยเทียบy
หาอนุพันย่อยเทียบx
เป็นสมการแม่นตรงเพราะ
และจะมี
อินติเกรตในรูป
แทนค่าสมการ
ใช้สูตร
อินติเกรต
อินติเกรต
เวลาตอบ ให้ดูสมการที่1,2 ดึงที่เหมือนกันออกมา1ตัว
ดึงที่ต่างกันมาทั้งหมดแล้วเท่ากับC
วันอาทิตย์ที่ 22 ตุลาคม พ.ศ. 2560
ตัวอย่างที่3.3Exact Equation (สมการแม่นตรง) (5x+4y)dx+(4x-8y^3)dy=0
จงหาคำตอบของสมการแม่นตรง (5x+4y)dx+(4x-8y3)dy=0
จัดรูปให้อยู่ใน
จะได้
ตรวจสอบก่อนว่าเป็นสมการแม่นตรงหรือไม่
โดยหาอนุพันย่อยเทียบy
หาอนุพันย่อยเทียบx
หาอนุพันย่อยเทียบx
และจะมี
อินติเกรตในรูป
แทนค่าสมการ
ใช้สูตร
อินติเกรต
อินติเกรต
จัดรูปเป็นสมการที่2
เวลาตอบ ให้ดูสมการที่1,2 ดึงที่เหมือนกันออกมา1ตัว
ดึงที่ต่างกันมาทั้งหมดแล้วเท่ากับC
จัดรูปให้อยู่ใน
วีดีโอ
วันอาทิตย์ที่ 15 ตุลาคม พ.ศ. 2560
ตัวอย่างที่3.2Exact Equation (สมการแม่นตรง) (2x-1)dx+(3y+7)dy=0
จงหาคำตอบของสมการแม่นตรง(2x-1)dx+(3y+7)dy=0
วิธีทำ
จัดรูปให้อยู่ใน
วีดีโอ
วันพุธที่ 11 ตุลาคม พ.ศ. 2560
ตัวอย่างที่2.5-2 สมการเอกพันธ์เชิงเส้น Homogeneous Linear Equation ydx=2(x+y)dy
จงหาคำตอบของสมการเอกพันธ์เชิงเส้น
จัดรูปให้อยู่ใน
จัดรูปสมการเป็นสมการที่1
ให้เช็คก่อนว่าเป็นสมการเอกพันธ์เชิงเส้นหรือไม่ โดยที่ f(x,y)=f(kx,ky)
มีตัวแปรตรงให้ใส่kที่นั้น
ดึงkออกจากสมการ
kตัดกัน
เป็นสมการเอกพันธ์
นำสมการที่ได้ไปแทนในสมการที่1
xตัดกัน
ย้ายข้างvไป
จัดรูป
นำvและ2คูณเข้าไปในวงเล็บ
จัดรูป
ดึกเครื่องหมายลบออก
ขั้นตอนนี้ทำเหมือนสมการแยกตัวแปรได้ โดยย้ายข้างจัดรูปให้dxอยู่กับx ให้dv อยู่กับv สมการที่2
จัดสมการ
ทำการแยกเศษส่วนย่อย สมการที่3
นำv(1+2v)คูณทั้งสมการ
จัดรูป
เทียบสัมประสิทธิ์ ค่าคงที่
เทียบสัมประสิทธิ์ v
แทนค่าA
แทนค่าA,Bในสมการที่3
แทน ในสมการที่2
อินติเกรตทั้ง2ข้าง
กระจายอินติเกรตเข้า
สูตรที่ใช้
อินติเกรต
กำหนดให้U
แทนค่า
2ตัดกัน
อินติเกรตเสร็จ
คืนค่าU
คืนค่าv
จากโดย กฎของลอการิทึม
จัดรูป
lnxตัดกัน
lnxตัดกัน
จากโดย กฎของลอการิทึม
เอา2เปลียนเป็นยกกำลัง
รวม
นำ เอกซ์โพเนนเชียล (e) คูณทั้งสมการ
จากความสัมพันธ์เอกซ์โพเนนเชียล (e)กับลอการิทึม
จะได้
นำyกำลัง2 คูณทั้งสมการ
จัดรูปให้อยู่ใน
จัดรูปสมการเป็นสมการที่1
ให้เช็คก่อนว่าเป็นสมการเอกพันธ์เชิงเส้นหรือไม่ โดยที่ f(x,y)=f(kx,ky)
มีตัวแปรตรงให้ใส่kที่นั้น
ดึงkออกจากสมการ
kตัดกัน
เป็นสมการเอกพันธ์
กำหนดตัวแปร
ดิฟy โดยใช้สูตรผลคูณ (หน้าดิฟหลังบวกหลังดิฟหน้า)นำสมการที่ได้ไปแทนในสมการที่1
xตัดกัน
ย้ายข้างvไป
จัดรูป
นำvและ2คูณเข้าไปในวงเล็บ
จัดรูป
ดึกเครื่องหมายลบออก
ขั้นตอนนี้ทำเหมือนสมการแยกตัวแปรได้ โดยย้ายข้างจัดรูปให้dxอยู่กับx ให้dv อยู่กับv สมการที่2
จัดสมการ
ทำการแยกเศษส่วนย่อย สมการที่3
นำv(1+2v)คูณทั้งสมการ
จัดรูป
เทียบสัมประสิทธิ์ ค่าคงที่
เทียบสัมประสิทธิ์ v
แทนค่าA
แทนค่าA,Bในสมการที่3
แทน ในสมการที่2
กระจายอินติเกรตเข้า
สูตรที่ใช้
อินติเกรต
กำหนดให้U
แทนค่า
2ตัดกัน
อินติเกรตเสร็จ
คืนค่าU
คืนค่าv
จัดรูป
lnxตัดกัน
lnxตัดกัน
จากโดย กฎของลอการิทึม
เอา2เปลียนเป็นยกกำลัง
รวม
นำ เอกซ์โพเนนเชียล (e) คูณทั้งสมการ
จากความสัมพันธ์เอกซ์โพเนนเชียล (e)กับลอการิทึม
จะได้
นำyกำลัง2 คูณทั้งสมการ
ตอบ
วีดีโอ
สมัครสมาชิก:
บทความ (Atom)